
ANL-6576 ANL-6576

2irgonne Bational Xaboratorg
COMPILER INTO GEORGE

ASSEMBLY ROUTINE

by

R. George

m-

LEGAL NOTICE

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis
seminates, or provides access to. any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.

ANL-6576
Mathematics and Computers
(TID-4500, 17th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois

COMPILER INTO GEORGE ASSEMBLY ROUTINE

by

R. George

Par t ic le Accelerator Division

June 1962

Operated by The University of Chicago
under

Contract W-31 -109-cng-38

COMPILER INTO GEORGE ASSEMIH.Y ROUTINE

by

R. George
P a r t i c l e A c c e l e r a t o r Div is ion

ABSTRACT

This program of the GEORGE Assembly Routine
(GAR) will accept For tran- l ike s tatements from paper tape
and create a GAR language program on tape. This includes
the needed ca l l s for common subroutines and the r e s e r v a
t ions for the named var iab le s and t e m p o r a r i e s . The original
s ta tements in Fortran are carr ied along as r e m a r k s .

The GAR language program may then be p r o c e s s e d
in the usual way by the GEORGE A s s e m b l y Routine, giving
machine- language code.

The level of sophist icat ion of the source language is
roughly equal to that of Fortrans i t or SALT.

INTRODUCTION

Many computer u s e r s are accus tomed to writing their own p r o
g r a m s in Fortran language and then having these pro g ra m s p r o c e s s e d to a
part icular machine code. The subject of this report is a compilat ion rou
tine, known as CIGAR, which does one phase of such p r o c e s s i n g to
GEORGE machine code.

This routine will accept For tran- l ike s ta tements from a 7-channcl
punched paper tape and in a s ingle pass create a corresponding GAR lan
guage progrann on paper tape. A package of ca l l s for the most commonly
used c lo sed subroutines is a lways copied into the GAR language program.
As the p r o c e s s i n g p r o c e e d s , a l i s t of var iable names and t e m p o r a r i e s is
held in the nnemory and is afterwards transformed into a l ist of r e s e r v a t i o n s .

It IS des i rab le to be able to make a compar i son between the resu l t s
of the different p r o c e s s i n g p h a s e s , s ince this compar i son is helpful in de
bugging the program. To faci l i tate th i s . CIGAR will cause the original
s ta tements in Fortran language tn be carr i ed along into the remarks c o l
umn of the GAR code that is produced.

There Are certa in r e s t r i c t i o n s and conventions which must be
o b s e r v e d in programniing for this compi lat ion routine. These arc d i s
c u s s e d at the appropriate p laces in this report . In addition, the
p r o g r a m m e r should be cognizant of the re s t r i c t ions and conventions of
GAR, which have been reported e l s e w h e r e .

Not all of the abi l i t i es of IBM's Fortran arc included in CIGAR'S
order se t . but cer ta in other useful o r d e r s have been appended. The r e
sultant source language has a leve l of sophist icat ion roughly equal to that
of For trans i t or SALT.

PROGRAM STRUCTURE

Comments

Comments may be written anywhere in the program and are copied
exact ly into the GAR code as r e m a r k s . A comment must begin with a
l e t ter , but is o therwise unres tr i c t ed as to content, s ince it does not result
in any n-iachine code. A comment is terminated by an E2> .

Arithmetic Statements

Ari thmet ic s ta tements must be preceded by a 3 -character s ta te
ment number and 6 s p a c e s o£ by 9 s p a c e s . Wherever a s tatement number
is used It must be exact ly 3 c h a r a c t e r s , the f irst of which is a dec imal
digit. The leading spaces must be present to enable the compi ler to dif
ferentiate between ar i thmet ic and control s ta tements . Spaces given within
a statement are ignored and may be used free ly .

Arithmetic s ta tements are each composed of a le f t -part and a
r ight-part , the 2 being separated by an < =>. The ent ire s tatement is
terminated by an • E 2 > .

The left -part may be s imple or compound. A s imple variable may
be defined as e i ther a s ingle variable or a subscr ipted array. A compound
left -part is connposed of 2 or more s imple var iab le s separated by c o m
m a s , one should not mix s ingle var iable and a r r a y s , nor fixed and floating
v a r i a b l e s . The le f t -part must be l e s s than 100 e ight-bi t c h a r a c t e r s in
length.

The r ight-part may be a lmos t any legal Fortran combination of
n u m b e r s , v a r i a b l e s , binary opera t ions , and functions. One should nut mix
fixed and floating quantit ies arbi trar i ly s ince the change of mode is made
only on an expl ic i t call for the c h a n g e - o f - m o d e functions (KIXF, FLOF) .
For the same reason , r ight-part mode should agree with lef t -part mode.
The r ight-part must be l e s s than 250 e ight-bi t c h a r a c t e r s in length. It is
t erminated by an < E 2 > .

BINARY OPERATIONS. . .

The following symbol s are used to denote the bas ic binary
operat ions in CIGAR. There are no unary operat ions ; a construct ion such
as v = ^ v - > or v (> v + > is i l l egal . The ordering of this l i s t shows the h ier
archy which is followed during the formula translat ion.

t exponentiation

* mult ipl icat ion

/ d iv i s ion

* addition

subtraction

One may write (f loat'f loat) or (f loat'f ixed) exponentiat ions . A
floating exponent may be a f loating-point number, a floating-point var iab le .
or a floating ar i thmet ic e x p r e s s i o n The f ixed-point exponent in an expo
nentiation is r e s t r i c t e d to a f ixed-point number or a f ixed-point var iable .

The remaining operators may be used cither for f loating-point
ar i thmet ic or for f ixed-point ar i thmet ic .

All u s a g e s of a part icular binary operat ion symbol at a given
level of bracketing are p r o c e s s e d to GAR code before proceeding to the
next symbol at this l eve l . Scanning for symbol s is done from left to right,
and from innermost bracket outwards . This means that the sequence

would be computed as if it were

but that the sequence

would be computed as

FUNCTIONS. . .

a • b / c • d

(a • b) / (c • d),

a • b / c / d

((a * b) / c) / d .

When the search for binary operat ion synnbols is exhausted at
a given leve l of bracket ing , a test is made for an • F • immediate ly p r e c e d
ing the left parenthes i s . If it is found, this t e l l s us that this is a function.
The name which appears to the left of the p a r e n t h e s i s - p a i r (including
terminal ' F y) is the name of the subroutine to be ra i led; the computed
contents of the p a r e n t h e s i s - p a i r is used as argument to the function
subroutine.

The following functions are built into the running package:

SQRF Floating point Square root
ABSF Floating point Absolute
SXNF Floating point Sine - Radians
COSF Floating point Cosine - Radians
E X P F Floating point Exponential - Base e
LOGF Floating point Logarithm - Base c
ATNF Floating point Arc Tangent - Radians
FIXF Floating to F ixed
FLOF Fixed to Floating
SINHF Floating point Hyperbolic Sine
COSHF Floating point Hyperbolic Cosine
ASINF Floating point Arc - Sine
ACOSF Floating point Arc - Cosine
RANDF Floating point Random number (-1 to +1)
CUBRF Floating point Cube root

A p r o g r a m m e r may free ly use any other name he w i s h e s provided only that
the function subroutine that b e a r s this name has s o m e w h e r e been inser ted ,
presumably with the GAR order (d i s cus sed infra).

The mode of the arguments to bui l t - in functions is a lways
floating except for FLOF. The mode of the resu l t s of bui l t - in functions is
a lways floating except for FIXF. In any other c a s e , the mode of the re su l t s
is determined by the f irst letter of the function name. The mode is floating
if this letter l i e s in the set Ky to v H^ or • Oy to vY> . The mode is fixed
if the let ter l i e s in the set <.I-> to < N > .

ARRAYS. . .

Arrayed var iab le s must a lways be defined by a d imens ion
s tatement before u s e . One may do s ingle or double subscript ing on either
fixed or floating v a r i a b l e s . The subscr ip t s must be f ixed-point constants
or f ixed-point v a r i a b l e s , or a combination of the 2 in double subscr ipt ing .
In the evaluation of fornnulas, the array a d d r e s s e s are computed before
the s earch for binary operation syn-ibols is begun, and therefore one may
not put ar i thmet ic e x p r e s s i o n s as subscr ip t s . There is no 3 -d imens iona l
subscr ipt ing .

Arrays are s tored row by row. forward in inemory . An array
name must a lways be accompanied by subscript information, except in
READ or PUNCH o r d e r s , where it must stand alone. In such o r d e r s the
ent ire array is transmit ted row by row. moving forward through the
m e m o r y .

FLOATING NUMBERS. .

Within an ar i thmet ic statetnent, a compi led f loating-point
number must be at l east 3 c h a r a c t e r s ; there must be exact ly one digit to
the left of the dec imal point, and one to 8 digits following it. This may
then be fol lowed by the sign of the exponent and a o n e - or 2-digit exponent.
In addition, one must keep floating-point numbers within the range of
GAR-assennblable nun-ibers.

The sign preceding the leftmost digit will be cons idered as a
binary ar i thmet ic operat ion , not as a sign of the number itself.

FIXED NUMBERS. . .

Connpiled f ixed-point numbers in ar i thmetic or control s ta te
ments may be one to 3 c h a r a c t e r s in length.

The sign preceding the lef tmost digit will be cons idered as an
ar i thmet ic operat ion , not as a sign of the number itself .

FLOATING VARIABLES. . .

F loa t ing -var iab le n a m e s may have one to 5 c h a r a c t e r s , the
f irst of which l i e s in the set \ A > t o < H > or ' 0 > to < Y >. One should avoid
names starting with • Z >, s ince such names are created by the CIGAR pro
gram. A name starting with v Z > is acceptable e i ther as fixed or floating,
but preferably floating if not o therwise determined Do not use terminal
<F^ for s imple v a r i a b l e s .

FIXED VARIABLES .

F i x e d - v a r i a b l e n a m e s may have one to 5 c h a r a c t e r s , the f irst
of which l i e s in the set <I> to < N > . Do not use terminal s F > for s imple
v a r i a b l e s .

Functional Statements

Any ar i thmet ic s tatement which has s imple s torage into a s ingle
variable of one to 4 c h a r a c t e r s may be trans formed into a functional s ta te
ment, which defines a c l o s e d subroutine, by appending a terminal F^ to
the s t o r a g e - v a r i a b l e name. It a l so remains a l eg i t imate ar i thmet ic
s tatement .

The s tatement will be executed and the result s tored in the s torage
var iable whenever the right part of any other ar i thmet ic s tatement includes
the name of the functional s tatement . Control s ta tements may not refer to
functional s t a t e m e n t s .

A functional s tatement may be placed anywhere in the program, but
there is a warning of poss ib le e r r o r if there It a cal l for its use prior to
its definition.

Procedure Cal ls

A procedure cal l must be preceded by a 3 -character s tatement
number and 6 spaces ^ £ by 9 s p a c e s . It differs from an ar i thmet ic s ta te -
n^ent in that no = ' sign appears . It is terminated by an E2 •.

The f irst 5 c h a r a c t e r s of the procedure call are taken as the name
of the subroutine to be cal led. This includes internal s p a c e s ; therefore ,
it is often benef ic ia l to check that the first word of the procedure cal l is
5 or m o r e c h a r a c t e r s in length.

The subroutine cal led by a procedure call must somewhere be
defined within the program. There is no res tr ic t ion on the content of such
a subroutine, except for a s s ignment of s torage var iab le s , if used e l s e w h e r e .

Example:

The subroutine: GAR E2

SIGNA E2 -+- E2 F800 E 2 / + 1 El
E2 -+ - E2 CBOl E 2 / + 1 El
E2 2AO/E2 E2 E4

The cal l: SIGNAL FROM TYPEWRITER E2

Control Statements

Control s ta tements are preceded by a 3 -charac ter statement number
and 3 s p a c e s , or by 6 s p a c e s . Leading s p a c e s must be present to enable
the compi ler to recogn ize the type of s tatement . Spaces within a s tatement
are ignored and may be used free ly . Control s ta tements are terminated by
an <E2>.

The following is a l ist of control s ta tements al lowed in CIGAR.

Absolute GO TO

Computed GO TO

IF

IF SENSE SWITCH

DO

READ

PUNCH

CONTINUE

PAUSE

STOP

DIMENSION

GAR

LOAD

BCD

MODIFY

BEGIN

ABSOLUTE GO TO. . .

This order may refer to any statement number that is defined
with the program. Wherever a statement number is used it must be exactly
3 characters, the first of which is a decimal digit.

Examples:

GO TO 000

GO TO 532

GO TO 99E

COMPUTED GO TO. . .

This order may refer to any one of a number, n, of statement
numbers, subject to the control of a fixed-point variable as its index. The
value of the index variable may range from I to n. If the value of the index
variable is I, control passes to the first statennent number; if the value is
2, control passes to the second statement number, e tc .

Examples:

GO TO (126. 132, 185), I

GO TO (126. 132, IBS) I

IF. . .

Between the parenthesis pair that follows the IF, one may place
a single variable name, or any arithmetic expression that does not include
further parenthesis.

Either fixed or floating expressions may be used.

Following the parenthesis pair there are 3 statement numbers
separated from each other by commas. If the arithmetic expression is
negative, control passes to the first; if zero, to the second; if positive, to
the third.

If the ari thmetic expression is fixed point, the test for zero is
made on the leading 12 bits. If the expression is floating point, the test for
zero is made on the high-order exponent of the word, resulting in dis
crimination at about 10"*".

Examples

IF (A) 120, 122. 124

IF (I) 130, 131, 132

IF (A-BIG*THING) 291, 206. 300

IF (J + K* L + I -954) 291, 206, 300

IF SENSE SWITCH. . .

After this order , we place the identifying number of the switch
to be used, and a comma. Two statement numbers follow separated by a
comma. U the switch is down (on), then control passes to the first address ,
otherwise, to the second.

Any of the 15 switches is allowed here , but one should remember
that A thru F are used to designate input and output devices and modes.*

No parenthesis should be used in this order .

Always set B. P. JUMP when running the object program.

Examples:

IF SENSE SWITCH 9, 172, 174

IF SWITCH A, 097, 099

DO. .

The DO is immediately followed by a 3-character statonicnl
number which we will call the target address . This is immediately followed
by a nonarrayed fixed-point variable which is used by the DO loop as an
index. This is followed by • -y , followed by lower limit, >̂ , >, upper limit,
<,y , and step sire.

•When one uses Package AA.

10

This order nnay have at its target addres s a s tatement that
be longs to any one of the following c l a s s e s :

a = b

READ

PUNCH

CONTINUE

PAUSE

CAR

BCD

The index l i m i t s and the index step s i ze may be e i ther a f ixed-
point dec imal number of 1 to 3 digits or a f ixed-point var iab le , not an
ar i thmet ic e x p r e s s i o n .

If the value 1 is to be used for step s i z e , the final comma and
the index step s i z e may be omitted.

For tran rules regarding nest ing of DO's must be observed . If
one is doing computation with a DO loop, one may not pass control to a sub
routine if that subroutine has another DO loop within it. as this would
constitute improper nest ing .

E x a m p l e s :

DO 128 1 = UN, lOUT, ISTEP

DO 128 J = I, 50, 2

DO 128 K = 1. J

READ-PUNCH. . .

Reading and punching are under control of s e n s e swi tches
A B C D E and F at the t ime of execut ion of the p r o g r a m . * Switches
B and C together de termine the phys ica l unit used for input.*

B C
0 0 Reader 1
0 1 Magnetic Input
1 0 Reader 2
1 1 Keyboard

'When one u s e s Package AA.

u

output.*
Switches E and F together de termine the physical unit for

0 0 Anelex
0 1 Magnetic Output
1 0 Paper Tape
1 I Typewriter

Switches A and D are used as to determine the maximum
number of co lumns of output information.

0
0
1
1

0
I
0
1

8 Columns
5 Columns
4 Columns
Suppress E2'8

These se t t ings are tes ted once at the beginning of execution of
the program. If one w i s h e s to inake changes during execut ion one must
both change the swi t ches and cause an excurs ion to the subroutine ZWITC of
the running package. The best way is to make a Procedure Call such as :

ZWITCHES ARE NOW TO BE RESET E2

READ I o r d e r s require the input of f ixed-point dec imal
numbers in the format acceptable to G E O - B - 8 - 2 0 2 , i . e . , *

Sign number El

The absolute value of the number must be l e s s than 2000.

READ 2 o r d e r s require the input of f loating-point dec imal num
b e r s in the format acceptable to G E O - B - I - I 16, i .e . ,*

Sign fraction sign of exponent exponent El

The fractional part may be 1 to 10 d ig i t s ; the exponent may be 1 to 2 d ig i t s .
The s ign of the number may be < + > , < - > , or <8p^' and may be preceded by
a string of s p a c e s , which in turn may be preceded by a letter string. This
is des igned so that program output may be read as input provided that the
output of <E2..' c h a r a c t e r s was suppres sed .

PUNCH 1 o r d e r s produce output of f ixed-point dec imal num
b e r s with absolute value l e s s than 2000. This is output via subroutine
G E O - B - 6 - 1 8 H •

*When one u s e s Package AA.

12

PUNCH 2 o r d e r s produce output of f loating-point dec imal
numbers of the format shown prev ious ly . The fractional part of the number
wil l be 9 d ig i t s . The exponent wil l be 2 d ig i t s . This output is via subroutine
G E C - B - 2 - 1 1 7 . *

Either s ingle i t e m s or a r r a y s may be transmit ted by READ-
PUNCH o r d e r s , but they may not be mixed within a s ingle order . If an
array nanie is g iven, the ent ire array is transini t ted

If a PUNCH order is executed for a l i s t of s ingle i t e m s (either
fixed or f loating), the i t e m s will be arranged in the max imum number of
co lumns starting at the left of the s h e e t *

If a PUNCH order is executed for a l i s t of arrayed v a r i a b l e s .
the i t e m s of each var iable will be put in the maximum number of co lumns .
res tart ing at the left of the sheet for each var iable .

E x a m p l e s :

READ I. I, J. K

PUNCH I. ILIST, J LIST

READ 2. A, B. C

PUNCH 2. ARRAY, BLOCK, CLIOU

CONTINUE

This i s a s imple No-op.

Example :

CONTINUE

PAUSE

At compi lat ion t ime the last four 8-bit c h a r a c t e r s which are
read following the PAUSE will be t rans formed into a s tored BCD m e s s a g e .
At execut ion t ime the machine prints the m e s s a g e and s tops . Ready, Con
t inuous , Co , c a u s e s the machine to proceed in sequence from there .

E x a m p l e s :

PAUSE 0123

PAUSE DBUC

PAUSE 7777

•When one u s e s Package AA.

13

STOP .

This does the same as PAUSE, except that Ready, Continuous,
and Go have no effect.

E x a m p l e s :

STOP

STOP

THRU

DONE

DIMENSION. . .

This order s e r v e s to define one or more array var iab le s and
to r e s e r v e space for the e l e m e n t s at the array. At the addres s that b e a r s
the name of the array will be s tored a number which d e s c r i b e s the array.
The B portion of the word holds the total number of r e s e r v e d words that
fol low, and the A portion of the word holds the number of colun:ins. If the
array is a s ingly subscr ipted l i s t , the 2 numbers are equal. This informa
tion is r e f erred to every t ime that an addres s of an array e l ement is
needed, it is used to check whether we have gone beyond the l imi t s of the
array. This order is nonexecutable and g i v e s a stop if execut ion is
at tempted.

Exannples:

DIMENSION ARRAY (10. 6), BLOCK (50)

DIMENSION ILIST (15), J LIST (15)

GAR. .

Th i s order p e r m i t s GAR Language code to be inser ted in
sequence . The code will be copied exact ly down to ^ E 4 ^ which is changed
to < E 1 > .

E x a m p l e s :

GAR E2

E2 3CO/ E2 CFOO E2 / E4

LOAD.

This order p e r m i t s GAR Language code to be inserted within
an array that has prev ious ly been defined. Insert ion is begun at the f irs t
r e s e r v e d word; one should not permit more words than can be contained
in the r e s e r v e d area . The code will be copied exact ly down to -. E 4 > ,
which is changed to • E l ^.

14

Examples:

LOAD ARRAY E2

E2

E2

E2

E2

E2

E2

E2

E2

DEC

DEC

DEC

DEC

E2

E2

E2

E2

3.781

4.629

7.104

8.615

E l

E l

E l

E4

BCD. .

This order permi ts any message, less than 250 charac ters in
length, which is intended as output at execution time to be written down on
the For t ran coding sheet in the final format. At compilation t ime, the
message is read to E4 , , changed to BCD words, and emitted as GAR
code. A call to a message-print ing-subroutine is supplied.

At run lime, as the control passes in sequence down to this
order, it causes execution of the printing routine and a jump around the
BCD words themselves.

Exannples

E2

E2

E 2

E2

E2

E2

E2

E2

MODIFY. . .

BCD E2

sp sp

sp sp

BENDING MAGNET I l7b/PAD

MODIFICATION SIX ^l Nov. 61

sp sp

sp sp

ALPHA BETA GAMMA DELTA

sp E4

With this o rder , one may change arithmetic or control s tate
ments in the program at execution time The following control statements
may easily be changed:

Absolute GO TO

Computed GO TO

15

IF

IF SENSE SWITCH

READ

PUNCH

CONTINUE

PAUSE

STOP

GAR

BCD

The modification of DO's and any order which terminates a
DO nest is not recommended.

The order to be modified, the order which follows it in sequence,
and the MODIFY order must each have unique staten-ient numbers. The
statement number which immediately follows the word MODIFY tells which
order is being changed, the second statement number is the number of the
one which follows in sequence. The final thing given in a MODIFY is the
new statement which is to be inserted during execution time. This may be
an ari thmetic statement, a procedure call, or a control statement. If it is
either of the first two, 3 leading spaces are required.

Examples:

200

201

202

MODIFY

MODIFY

MODIFY

122,

122,

165,

123,

123,

166,

G O T O bOO

READ 1 . I, J . K. L, M

ABLE = BAKER

BEGIN.

This is always the last compiled statement of a program. It
indicates the starting statement number.

Example:

BEGIN 100

16

ERROR STOPS

If there is an e r r o r in syntax in the For t ran language program, it
will probably be detected by CIGAR during the compilation. The machine
will print one of the following numbers and the word ERROR on the Anelex.
and come to a stop. This list will tell the kind of e r ro r that has been
detected.

E r r o r Miscellaneous
1 E r r o r Line cannot be Classified
2 E r r o r Variable Name Unsuitable
3 E r r o r Improper Dimensioning
4 E r r o r Improper DO Statement
5 E r r o r Improper IF Statement
6 E r r o r Variable Name Omitted
7 E r r o r Statement Number Omitted
8 E r r o r Improper Modify Order
9 E r r o r Beyond Limits of List
A E r r o r Improper Read Order
B E r r o r Improper Punch Order
C E r r o r E r r o r in Equation Form
D E r r o r Too many Characters

SUBROUTINES

The following subroutines as they exist on GAR II as of January 1,
1962. a re called and modified by the running package or otherwise intro
duced into the final program

NAME DESCRIPTION AMD NUMBER

ZAR Floating Arithmetic GEO-D-1-115
ZEX Floating Exponential GEO-E-7-114
ZIP Floating Input GEO-B-1-116
ZOP Floating Output GEO-B-2-117
ZORT Floating Square Root GEO-E-8-109
71CO Floating Sine-Cosine G E O - E - l l - 1 6 8
ZLOC Floating Natural Log GEO-E-13-170
ZART Floating Arc-Tangent GEO-E-15-172
ZIOP Fixed Integer Output GEO-B-6-188
ZPII Fixed Integer Input CEO-B-8-202
ZROOT Floating Cube Root GEO-E-19-207

CHECK LIST

The following is a list of ways in which CIGAR language deviates
from IBM 704 For t ran language. The programmer , especially the experi
enced For t ran programmer , is cautioned to read these restr ic t ions first.
I am indebted to John Reynolds (or this list.

17

(1) Leading spaces are used to determine the statement type.

(2) Statement numbers must be exactly 3 charac ters .

(3) Change of nnode occurs only on explicit call for its subroutines.

(4) Not all of Fo r t r an ' s built-in functions are included.

(5) There is no unary < +> or < - >

(6) The hierarchy of operations does not place multiplication and
division on the same level (nor addition and subtraction).

(7) Certain exponentiations are not allowed.

(8) The calls for Fo r t r an ' s standard functions must be made with
the names as listed on page 5.

(9) Arrays are stored in increasing addresses in this way:

ail. a|i , aij , a^i, â ^

(10) In READ or PUNCH orde r s , one gives only the nan-ie of an
ar ray to t ransmit the entire ar ray .

(11) There is no 3-dimensional subscripting.

(12) Subscripts may not be arithmetic expressions.

(13) Floating-point numbers and fixed-point numbers which are com
piled into arithmetic expressions are severely res t r ic ted as to
format.

(14) Variable names may be one to 5 charac te rs in length, and should
not begin with <Z>.

(15) Not all of Fo r t r an ' s control statements are allowed. (See
pages 7 - 8).

(16) The ar i thmetic expression in an IF statement may not itself
contain parentheses .

(17) There is no parenthesis in the IF SENSE SWITCH order .

(18) The limits and step size in a DO order may not be arithmetic
express ions .

(19) Nesting rules for DO nests are somewhat more stringent.

18

(20) There is no FORMAT order . There is one built-in format
for fixed-point numbers and one for floating-point numbers .

(21) One may not mix fixed- and floating-variable names, nor single-
and arrayed-variable names, within a single READ or PUNCH
order .

{Z2) There is no looping within a READ or PUNCH order .

(23) The final statement of a program must be a BEGIN order .

mmiw

